A Local Dimension Test for Numerically Approximated Points on Algebraic Sets

نویسندگان

  • DANIEL J. BATES
  • JONATHAN D. HAUENSTEIN
  • ANDREW J. SOMMESE
چکیده

Given a numerical approximation to a point p on the set V of common zeroes of a set of multivariate polynomials with complex coefficients, this article presents an efficient method to compute the maximum dimension of the irreducible components of V which pass through p, i.e., a local dimension test. Such a test, used to filter out the so-called “junk points,” is a crucial element in the numerical irreducible decomposition algorithms of Sommese, Verschelde, and Wampler. Computational evidence presented in this article illustrates that, with this new local-dimension test, “junk-point filtering” is no longer a bottleneck in the computation of a numerical irreducible decomposition. For moderate size examples this results in well over an order of magnitude improvement in the computation of a numerical irreducible decomposition. Also, to compute the irreducible components of a fixed dimension, it is no longer necessary to compute the numerical irreducible decomposition of all higher dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Structure of Sets Which Are Well Approximated by Zero Sets of Harmonic Polynomials

The zero sets of harmonic polynomials play a crucial role in the study of the free boundary regularity problem for harmonic measure. In order to understand the fine structure of these free boundaries a detailed study of the singular points of these zero sets is required. In this paper we study how “degree k points” sit inside zero sets of harmonic polynomials in R of degree d (for all n ≥ 2 and...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

AN INDUCTIVE FUZZY DIMENSION

Using a system of axioms among with a modified definition of boundary on the basis of the intuitionistic fuzzy sets, we formulate an inductive structure for the dimension of fuzzy spaces which has been defined by Coker. This new definition of boundary allows to characterize an intuitionistic fuzzy clopen set as a set with zero boundary. Also, some critical properties and applications are establ...

متن کامل

Numerically intersecting algebraic varieties via witness sets

The fundamental construct of numerical algebraic geometry is the representation of an irreducible algebraic set, A, by a witness set, which consists of a polynomial system, F , for which A is an irreducible component of V(F ), a generic linear space L of complementary dimension to A, and a numerical approximation to the set of witness points, L ∩A. Given F , methods exist for computing a numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008